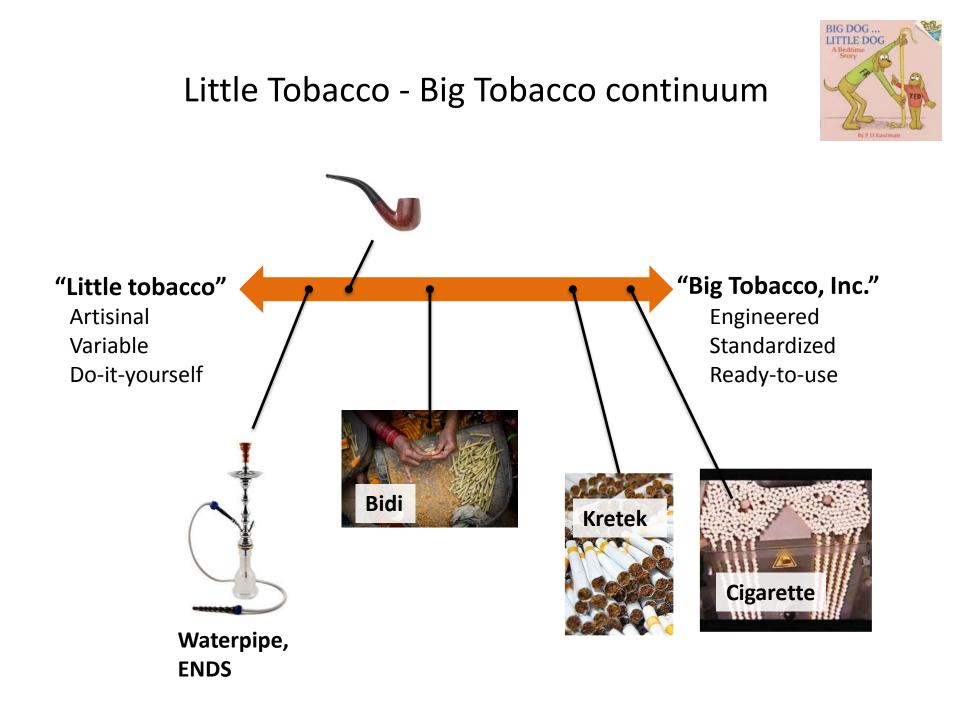
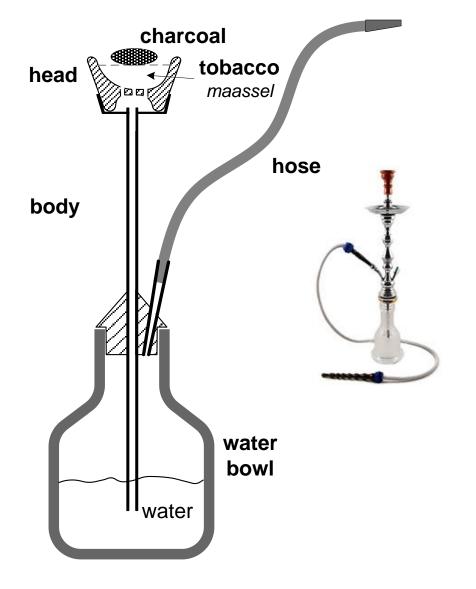
Is the FCTC tenable for non-standard tobacco products? The case of the waterpipe.

Alan Shihadeh American University of Beirut


> Waterpipe Tobacco Smoking Regulatory Challenges AUB Nov 6-7, 2018

Rene Magritte (1898-1967)

Registe


Waterpipe characteristics

Heavily flavored, high glycerol content "maassel"

tobacco burn not self-sustaining \rightarrow charcoal needed

long flow path with bubbler/humidifier makes a cool, humid aerosol

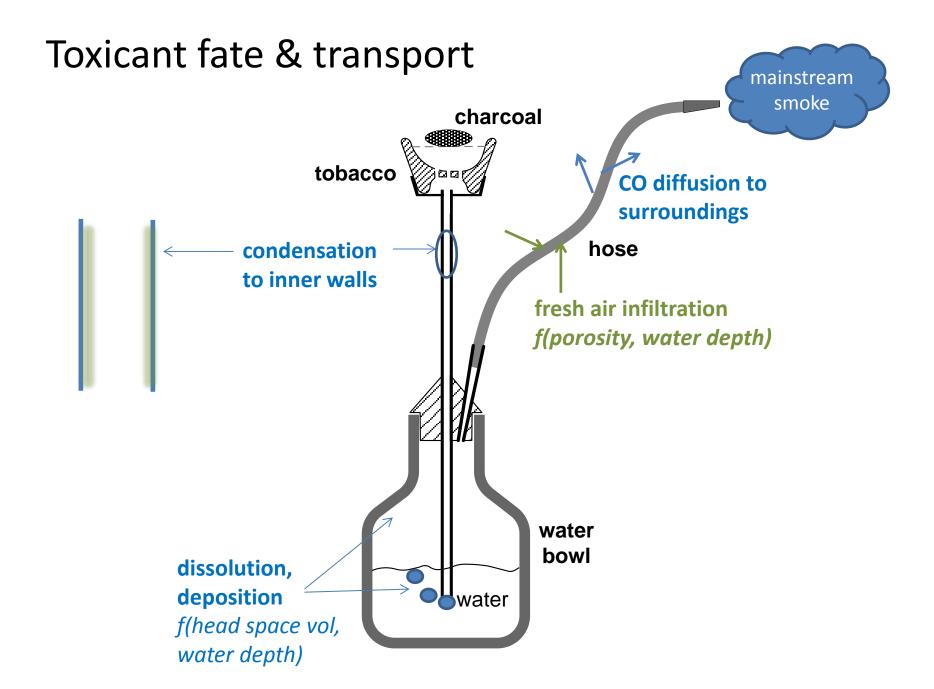
order of magnitude higher puff velocity & volume (200 ml/s, 500 ml)

Preparing a waterpipe involves using these items

FCTC Articles 9 & 10

Article 9 Regulation of the contents of tobacco products


"The COP...shall propose guidelines for testing and measuring the contents and emissions of tobacco products, and for the regulation of these..."


Article 10

Regulation of tobacco product disclosures

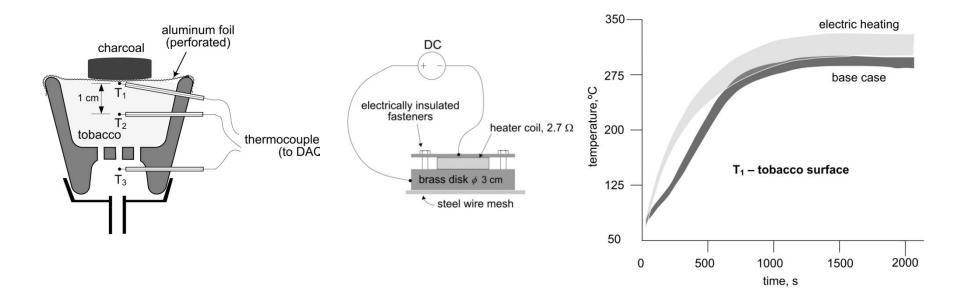
"Each Party shall...require manufacturers of tobacco products to disclose...information about the contents and emissions of tobacco products..."


Toxicant emission sources

Waterpipe smoke toxicants (MS yields/unit)

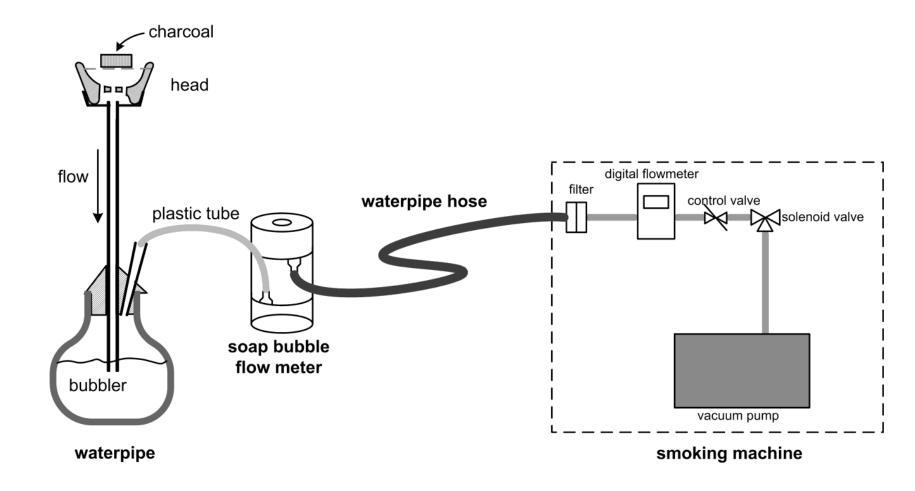
How important is the tobacco for toxicant emissions?

"Provides the same flavorful smoke found in other shisha but without the harmful effects of tobacco" <u>www.texashooka.com</u>



Except for nicotine, toxicant profiles of tobacco and tobacco-free toxicant yields are the same

	Product type	\frown	
Toxicant yield mean±95% CI	Tobacco	Non-tobacco	p
Nicotine, mg	1.04 ± 0.30	< 0.01	< 0.001
Carbon monoxide, mg	155 ± 49	159 ± 42	n.s.
Nitric oxide, μg	437 ± 207	386 ± 116	n.s.
Tar, mg	464 ± 159	513 ± 115	n.s.
TPM, mg	770 ± 228	855 ± 192	n.s.
Carcinogenic PAH, ng			
Benz (a)anthracene	86.4 ± 15.2	113 ± 46	n.s.
Chrysene	106 ± 16	124 ± 36	n.s.
Benzo(b+k)fluoranthenes	64.7 ± 11.3	72.9 ± 12.6	n.s.
Benzo(a)pyrene	51.8 ± 12.9	66.1 ±17.8	n.s.
Indeno(1,2,3-cd)pyrene	47.3 ± 10.7	44.3 ± 10.4	n.s.
Volatile aldehydes, μg			
Formaldehyde	58.7 ± 21.6	117.6 ± 78.7	n.s.
Acetaldehyde	383 ± 121	566 ± 370	n.s.
Acetone	118 ± 36	163± 68	n.s.
Propionaldehyde	51.7 ± 15.3	98.4 ± 65.0	n.s.
Methacrolein	12.2 ± 4.4	20.4 ± 9.7	n.s.


CHARCOAL

HOSE

Infiltration rate measurement setup

Infiltration rate varies widely across and within hose types

Test	Hose	Material	Length (cm)	Outer dia. (cm)	Infiltration rate (SLPM)
1	A1	Leather	158	1.5	3.3
2	A2	Leather	162	1.5	3.8
3	B1	Leather	142	1.5	1.5
4	B2	Leather	142	1.5	1.4
5	B3	Leather	144	1.5	2.1
6	B4	Leather	143	1.5	3.3
7	B5	Leather	145	1.5	1.2
8	C1	Leather	131	1.2	1.3
9	C2	Leather	134	1.2	2.5
10	D1	Leather	129	1.3	0.9
11	D2	Leather	130	1.3	1.2
12	E1	Leather	116	1.3	2.7
13	E2	Leather	113	1.3	2.4
14	F	Plastic	130	1.4	0
15	G	Plastic	190	1.2	0
16	H1	Plastic	134	1.1	0
17	H2	Plastic	134	1.1	0
18	I 1	Plastic	175	1.2	0.8
19	12	Plastic	177	1.2	1.1
20	J1	Plastic	182	1.3	0
21	J2	Plastic	181	1.2	0
22	K1	Plastic	191	1.5	0
23	K2	Plastic	191	1.5	0

Infiltration affects toxicant yield

	C	Current study	/
	leather	plastic	yield ratio
Infiltration rate, SLPM	3.8	0	
Tobacco consumed, g	3.6	5.1	1.2*
TPM, mg/session	1180	2860	2.4*
CO, mg/session	99	242	2.4*
nicotine, mg/session	6.06	5.23	0.9
CO:nicotine	16.3	46.3	2.8*

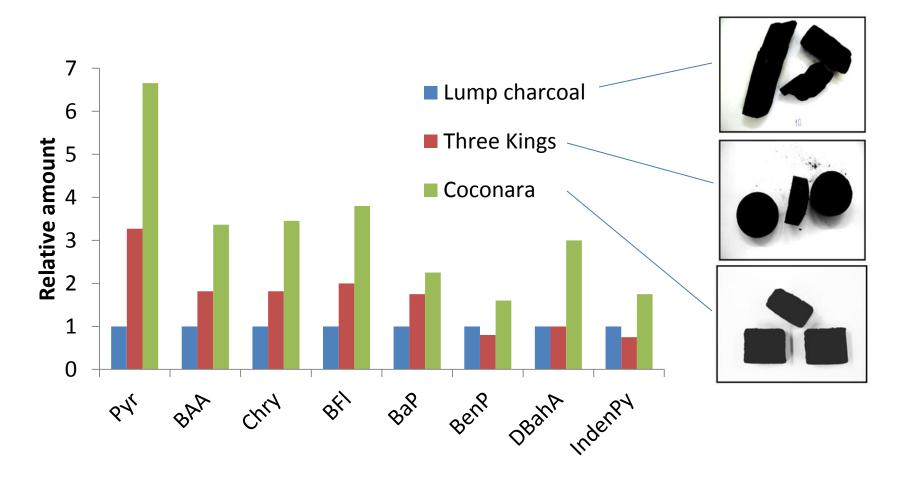
- More air infiltration means less smoke drawn through head
- CO is capable of diffusing out of the hose during puffing

"Healthy Hose"

The "Al Fakher Healthy Hookah Hose" is one of Al Fakher's newest products. The Healthy Hookah hose is produced from high quality plastic and guarantees the natural flavors taste of Al Fakher.

Review

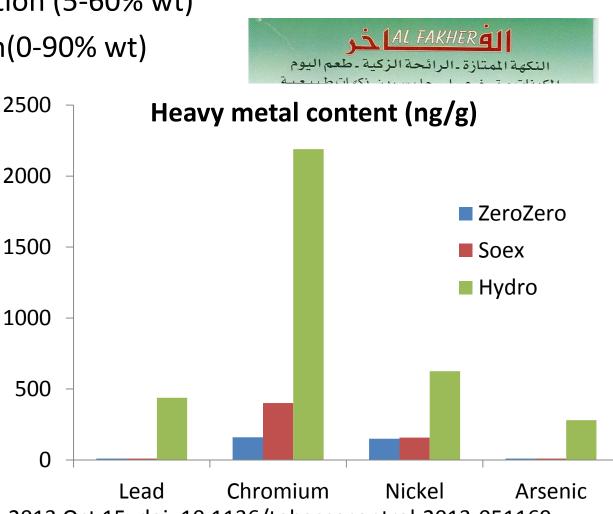
- Toxicant emissions are a function of product <u>combinations</u>.
- Who of these manufacturers is responsible for the emissions?


Ways forward (short term)

• Shift approach. For "little tobacco", focus on the design and content of the principle components (and potential interactions) rather than emissions from the total smoked unit.

"Little tobacco" "Big Tobacco, Inc."

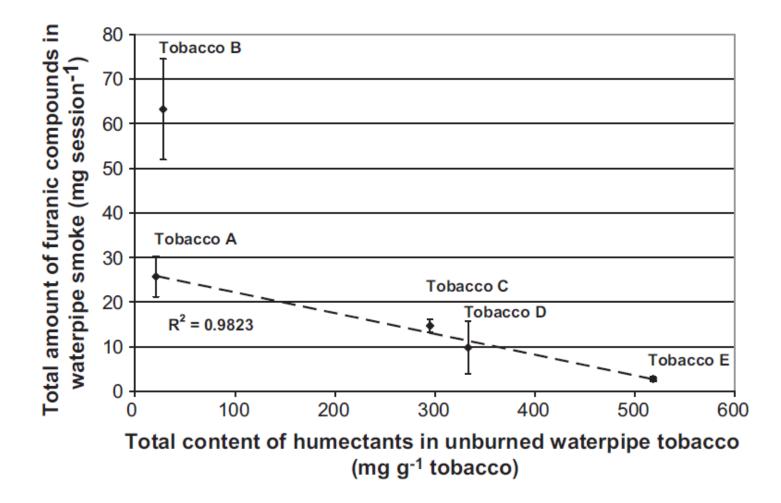
• Short term: limits on <u>contaminants</u> (e.g. metals in maassel, PAH in charcoal), ban unproven health claims.


PAH content of charcoal varies widely by product

Sepetdjian, Saliba, & Shihadeh, Food Chem Toxicol. 2010 Nov;48(11):3242-5. doi: 10.1016/j.fct.2010.08.033

Waterpipe *maassel* ingredients and contaminants vary systematically across products

- Humectant fraction (5-60% wt)
- Tobacco fraction(0-90% wt)
- Flavor agents 2500
- Heavy metals
- Nicotine



Hammal et al, Tob Control. 2013 Oct 15. doi: 10.1136/tobaccocontrol-2013-051169

Ways forward (longer term)

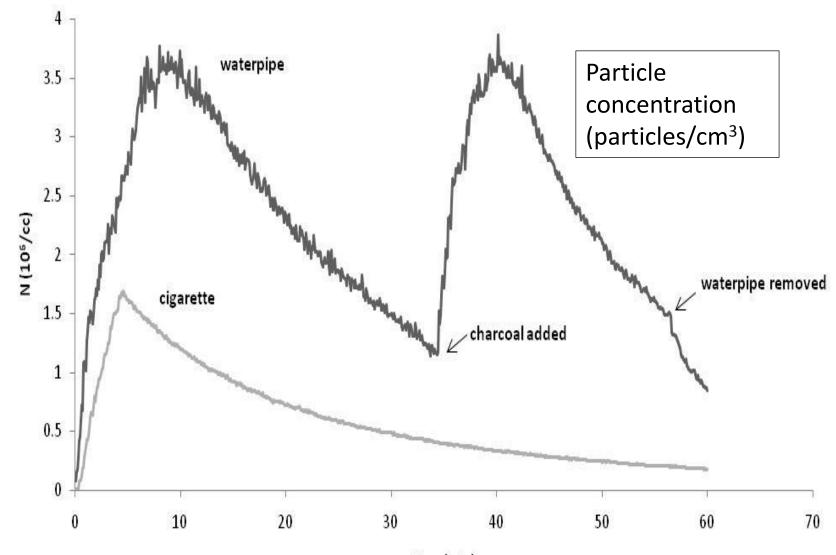
- Ingredients/additives, hardware (e.g. hose infiltration)
- More research needed to establish relationships between toxicant exposure and ingredients & hardware.

E.g. humectant content and furan yield vary across products

Acknowledgments

- Dr. Thomas Eissenberg (VCU Department of Psychology)
- Dr. Najat Saliba (AUB Department of Chemistry)
- AUB and VCU students and staff
- US National Institutes of Health and US Food and Drug Administration, Research for International Tobacco Control (IDRC), AUB University Research Board

Thanks for your attention!

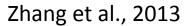

- chamber based studies
- observational studies of cafés

Chamber study

Daher et. al, Atmospheric Environment, 44, 8-14, 2009.

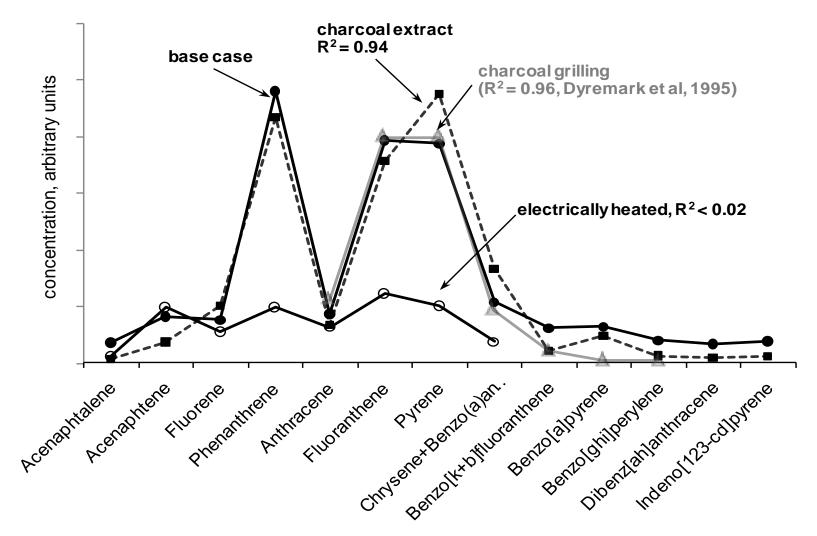
Waterpipe emits more nanoparticles

time (min)


Daher et. al, Atmospheric Environment, 44, 8-14, 2009.


WP emits more of everything measured

mean±95% Cl	waterpipe SS	cigarette SS
	N = 12	N=9
Carbon monoxide, mg	2269 ± 108	65.5 ± 5.5
PAH, ng	N = 11	N = 3
Total PAH	1193 ± 226	305 ± 49
Particle number emissions	N = 4	N = 4
ultrafine particles 5.6-99.5 nm, /10 ¹²	3.99 ± 0.60	0.639 ± 0.188
total particles 5.6-560 nm, /1012	4.38 ± 0.66	1.68 ± 0.27
count median diameter, nm	37.9 ± 4.1	130 ± 8
Volatile aldehydes, ug	N = 6	N = 5
Total aldehydes	12000 ± 1610	2954 ± 416


What about per <u>smoker-hour</u>?

Observational studies in WP cafés

PAH "finger print" of unburned charcoal and of collected smoke particles are the same

Monzer, B., Sepetdjian, E., Saliba, N. and Shihadeh, A. Charcoal combustion as a source of CO and carcinogenic PAH in mainstream narghile waterpipe smok, *Food and Chemical Toxicology, May 2008 (in press)*